반응형
상관분석(Correlation Analysis)은 확률론과 통계학에서 두 변수간에 어떤 선형적 관계를 가지고 있지를 분석하는 방법이다. 두변수는 서로 독립적인 관계로 부터 서로 상관된 관계일 수 있으며 이때 두 변수간의 관계의 강도를 상관관계(Correlation, Correlation coefficient)라 한다. 상관분석에서는 상관관계의 정도를 나타내는 단위로 모상관계수 ρ를 사용한다.
상관관계의 정도를 파악하는 상관계수(Correlation coefficient)는 두 변수간의 연관된 정도를 나타낼 뿐 인과관계를 설명하는 것은 아니다. 두 변수간에 원인과 결과의 인과관계가 있는지에 대한 것은 회귀분석을 통해 인과관계의 방향, 정도와 수학적 모델을 확인해 볼수 있다.
분석방법
단순히 두 개의 변수가 어느 정도 강한 관계에 있는가를 측정하는 단순상관분석(simple correlation analysis), 3개 이상의 변수들간의 관계에 대한 강도를 측정하는 다중상관분석이 있다. 다중상관분석에서 다른 변수들과의 관계를 고정하고 두 변수만의 관계에 대한 강도를 나타내는 것을 편상관계분석(partial correlation analysis)이라고 한다.
이때 상관관계가 0<ρ≤+1 이면 양의 상관, -1≤ρ<0 이면 음의 상관, ρ=0이면 무상관이라고 한다. 하지만 0인 경우 상관이 없다는 것이 아니라 선형의 상관관계가 아니라는 것이다.
- 피어슨 상관계수 (Pearson correlation coefficient)
피어슨 상관계수는 두 변수간의 관련성을 구하기 위해 보편적으로 이용된다. - 스피어만 상관계수 (Spearman correlation coefficient)
스피어만 상관계수는 데이터가 서열척도인 경우 즉 자료의 값 대신 순위를 이용하는 경우의 상관계수로서, 데이터를 작은 것부터 차례로 순위를 매겨 서열 순서로 바꾼 뒤 순위를 이용해 상관계수를 구한다. 두 변수 간의 연관 관계가 있는지 없는지를 밝혀주며 자료에 이상점이 있거나 표본크기가 작을 때 유용하다. 스피어만 상관계수는 -1과 1 사이의 값을 가지는데 두 변수안의 순위가 완전히 일치하면 +1이고, 두 변수의 순위가 완전히 반대이면 -1이 된다. 예를 들어 수학 잘하는 학생이 영어를 잘하는 것과 상관있는지 없는지를 알아보는데 쓰여질 수 있다. - 크론바흐 알파 계수(Cronbach Alpha) 신뢰도
크론바흐 알파 계수(Cronbach's alpha)의 신뢰도 계수 α는 검사의 내적 일관성을 나타내는 값으로서 한 검사 내에서의 변수들 간의 평균상관관계에 근거해 검사문항들이 동질적인 요소로 구성되어 있는지를 분석하는 것이다. 동일한 개념이라면 서로 다른 독립된 측정 방법으로 측정했을 때 결과가 비슷하게 나타날 것이라는 가정을 바탕으로 한다.예를 들어 설문지 조사의 경우 잘 만들어 같은 내용의 질문을 다른 형태로 반복하여 질문한 다음 같게 대답했는지를 검사하여 신뢰도를 알아 볼수 있다. 일반적으로는 요인분석을 하여 요인들을 추출하고 이들 요인들이 동질 변수들로 구성되어 있는지를 확인할 때 이용한다. 사전조사나 같은 속성의 질문을 반복하여 신뢰도를 높일 수 있다.
반응형
'Devlopment > 정리 글' 카테고리의 다른 글
C와 Java의 컴파일 과정 (1) | 2011.05.27 |
---|---|
난수 발생기 (2) | 2010.06.23 |
SnmpWalk (0) | 2010.04.27 |
객체 지향 원칙 (0) | 2008.08.21 |
리소스 지향 아키텍처(ROA) (0) | 2008.07.29 |
검색엔진 (1) | 2008.07.17 |
REST (0) | 2008.07.09 |
피어슨 상관 계수 (0) | 2008.07.09 |
유클리디안 거리 (0) | 2008.07.08 |
집단지성 (0) | 2008.06.25 |